
	

SQL	GPS	PROJECT	
	
By	

Nate	Boyle	
10/10/2017	

	
Objectives:	

§ Create	a	table	for	entering	and	storing	the	name	(acronym),	location	(GPS	coordinates),	
and	description	(full	name)	of	a	given	place.	

§ Create	a	spatial	index	for	the	table	using	‘location’.	
§ Fill	table	up	by	entering	data	for	specified	places.	
§ Use	various	SQL	operations	to	test	the	efficacy	of	the	table.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

First	we	create	a	table	specifying	the	names	of	the	columns	and	their	data	types:	
	
CREATE	TABLE	Points	(
	 name	VARCHAR(20)	PRIMARY	KEY,	
	 location	GEOGRAPHY,	
	 description	VARCHAR(200))	
	

	
	
	
Then	we	create		the	spatial	index	is	creating	using	data	stored	in	the	‘location’	
column:	
	
CREATE	SPATIAL	INDEX	[SPATIAL_Table_1]	ON	[dbo].[Points]	
(
	 [location]	
)	
	

	
	

Now	we	enter	in	our	first	row	of	data,	specifically	for	Santa	Barbara	City	College	
SBCC:	
	
INSERT	INTO	Points	
VALUES	
('SBCC',	GEOGRAPHY::Point('34.2422',	'-119.4151',	4326),	'Santa	Barbara	City	College');	

	
	
Then	for	three	more	locations	within	twenty	miles	of	the	original	item,	SBCC.	
(Nate’s	FAV	is	the	Tunnel	Road	hiking	trail	in	Santa	Barbara	County):	
INSERT	INTO	Points	
VALUES	
('Nate''s	FAV',	GEOGRAPHY::Point('34.486874',	'-119.700689',	4326),	'Nate	Boyle');	
INSERT	INTO	Points	
VALUES	
('ZOO',	GEOGRAPHY::Point('34.420371',	'-119.666361',	4326),	'Santa	Barbara	Zoological	
Gardens');	
INSERT	INTO	Points	
VALUES	
('MUSEUM',	GEOGRAPHY::Point('34.440897',	'-119.714387',	4326),	'Santa	Barbara	Museum	of	
Natural	History');	

	

Finally,	we	enter	in	data	for	the	last	three	places,	which	are	all	at	least	40	miles	
from	SBCC:	
	
INSERT	INTO	Points	
VALUES	
('UCD',	GEOGRAPHY::Point('38.538291',	'-121.761661',	4326),	'University	of	California	Davis');	
INSERT	INTO	Points	
VALUES	
('IBM',	GEOGRAPHY::Point('41.108263',	'-73.7203881',	4326),	'International	Business	
Machines	Corporation	Headquarters');	
INSERT	INTO	Points	
VALUES	
('MICRO',	GEOGRAPHY::Point('47.639308	',	'-122.128373',	4326),	'Microsoft	Headquarters');	
	

	
	
Here	we	use	a	SELECT	*	FROM	query	for	the	Points	table	to	display	our	entered	
data.	But,	there	is	something	funky	going	on	with	our	‘location’	column:	
	

	
	
	

To	address	this,	we	use	.ToString()	attached	to	‘location’:	
	

	
	
Here	we	create	a	query	used	to	find	the	two	nearest	places	to	SBCC.	To	do	this	we	
compare	the	data	stored	in	the	‘location’	column	with	a	predetermined	variable	
that	has	‘location’	data	identical	to	SBCC.	We	also	implement	a	TOP	clause	to	
accomplish	our	goal:	
	
DECLARE	@sbcc	GEOGRAPHY	=	
(SELECT	location	
FROM	Points	
WHERE	name	=	'SBCC');	
	
SELECT	name,	description,	location.ToString()	as	'location',	location.STDistance(@sbcc)/1000	
as	'Kilometers	from	Campus'	
FROM	Points	
WHERE	name	in	
(SELECT	TOP	2	name	FROM	Points	WHERE	name	!=	'SBCC'	
ORDER	BY	location.STDistance(@sbcc))	

	
	

Here	we	create	a	query	similar	to	the	previous	one	in	that	it	finds	the	two	nearest	
places	to	SBCC,	but	it	also	prints	out	a	concatenated	string	that	be	used	as	a	
Google	Maps	URL	when	copied	and	pasted	to	find	the	distance	between	SBCC	and	
one	of	the	two	closest	locations.	In	addition	to	the	usual	code	and	a	screenshot	of	
the	code,	a	screenshot	of	the	webpage	found	using	the	URL	given	is	also	provided:	
	
DECLARE	@sbcc	GEOGRAPHY	=	
(SELECT	location	
FROM	Points	
WHERE	name	=	'SBCC');	
	
SELECT	'https://www.google.com/maps/dir/'+SUBSTRING(location.ToString(),		20,	
9)+',+'+SUBSTRING(location.ToString(),		8,	10)		
+'/'+SUBSTRING(@sbcc.ToString(),		20,	9)+',+'+SUBSTRING(@sbcc.ToString(),		8,	10)	as	'Google	
Maps	URL'		
FROM	Points	
WHERE	name	in	
(SELECT	TOP	2	name	FROM	Points	WHERE	name	!=	'SBCC'	
ORDER	BY	location.STDistance(@sbcc));	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Distance	between	SBCC	and	the	Santa	Barbara	Zoo	
	

	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

Distance	between	SBCC	and	the	Santa	Barbara	Museum	of	Natural	History	
	

	

	
	
	
	
	
	
	
	
	
	
	
	
	

The	previous	query	is	useful,	but	has	a	one	time	use	and	is	limited	to	comparing	
locations	to	a	hard-coded	SBCC	location.	To	create	a	more	flexible	and	even	
reusable	query,	we	create	a	procedure	that	can	take	in	any	two	locations	and	give	
a	URL	for	finding	the	distance	between	them	on	Google	Maps:	
	
CREATE	PROCEDURE	FIND_DISTANCE	(@Loc1	VARCHAR(20),	@Loc2	VARCHAR(20))	AS	
DECLARE	@GPS1	GEOGRAPHY	=		
(SELECT	location	FROM	Points	
WHERE	name	=	@Loc1)	
DECLARE	@GPS2	GEOGRAPHY	=		
(SELECT	location	FROM	Points	
WHERE	name	=	@Loc2)	
	
SELECT	'https://www.google.com/maps/dir/'+SUBSTRING(@GPS1.ToString(),		20,	
9)+',+'+SUBSTRING(@GPS1.ToString(),		8,	10)		
+'/'+SUBSTRING(@GPS2.ToString(),		20,	9)+',+'+SUBSTRING(@GPS2.ToString(),		8,	10)	as	
'Google	Maps	URL'		
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

To	test	the	efficacy	of	the	procedure	we	compare	the	locations	of	IBM	and	
Microsoft	headquarters:	
	

	

	
	
	
	
	
	
	
	
	
	
	
	
	

