
Nate Boyle
4/19/2023

SQL for Data Science: Peer Review Assignment

“Data Scientist Role Play: Profiling and Analyzing the Yelp Dataset Coursera
Worksheet”

*Please note that any text I add in other than SQL code is in Verdana
The SQL code or output text as well as the text from the original txt.file is in Consolas

Instructions:

This is a 2-part assignment. In the first part, you are asked a series of
questions that will help you profile and understand the data just like a data
scientist would. For this first part of the assignment, you will be assessed both
on the correctness of your findings, as well as the code you used to arrive at
your answer. You will be graded on how easy your code is to read, so remember to
use proper formatting and comments where necessary.

In the second part of the assignment, you are asked to come up with your own
inferences and analysis of the data for a particular research question you want
to answer. You will be required to prepare the dataset for the analysis you
choose to do. As with the first part, you will be graded, in part, on how easy
your code is to read, so use proper formatting and comments to illustrate and
communicate your intent as required.

For both parts of this assignment, use this "worksheet." It provides all the
questions you are being asked, and your job will be to transfer your answers and
SQL coding where indicated into this worksheet so that your peers can review your
work. You should be able to use any Text Editor (Windows Notepad, Apple TextEdit,
Notepad ++, Sublime Text, etc.) to copy and paste your answers. If you are going
to use Word or some other page layout application, just be careful to make sure
your answers and code are lined appropriately.
In this case, you may want to save as a PDF to ensure your formatting remains
intact for your reviewer.

Part 1: Yelp Dataset Profiling and Understanding

1. Profile the data by finding the total number of records for each of the tables
below:

i. Attribute table = 10000 total rows (Select * From attribute)
ii. Business table = 10000 total rows (Select * From business)
iii. Category table = 10000 total rows (Select * From category)
iv. Checkin table = 10000 total rows (Select * From checkin)
v. elite_years table = 10000 total rows (Select * From elite_years)
vi. friend table = 10000 total rows (Select * From friend)
vii. hours table = 10000 total rows (Select * From hours)
viii. photo table = 10000 total rows (Select * From photo)
ix. review table = 10000 total rows (Select * From review)
x. tip table = 10000 total rows (Select * From tip)
xi. user table = 10000 total rows (Select * From user)

2. Find the total distinct records by either the foreign key or primary key for
each table. If two foreign keys are listed in the table, please specify which
foreign key.

i. Business = 10000 total rows
--*primary key*
(Select Distinct id From business)

ii. Hours = 1562 total rows
--*foreign key*
(Select Distinct business_id From hours)

iii. Category = 2643 total rows
--*foreign key*
(Select Distinct business_id From category)

iv. Attribute = 1115 total rows
--*foreign key*
(Select Distinct business_id From attribute)

v. Review = 10000 total rows
--*primary key*
(Select Distinct id From)

 = 8090 total rows
--*foreign key*
(Select Distinct business_id From review)

 = 9581 total rows
--*foreign key* (Select Distinct user_id From review)

vi. Checkin = 493 total rows
--*foreign key*
(Select Distinct business_id From checkin)

vii. Photo = 10000 total rows
--*primary key*
(Select Distinct id From photo)

 = 6493 total rows
--*foreign key*
(Select Distinct business_id From photo)

viii. Tip = 3979 total rows
--*foreign key*
(Select Distinct business_id From tip)

 = 537 total rows
--*foreign key*
(Select Distinct user_id From tip)

ix. User = 10000 total rows
--*primary key*
(Select Distinct id From user)

x. Friend = 11 total rows
--*foreign key*
(Select Distinct user_id From friend)

xi. Elite_years = 2780 total rows
--*foreign key*
(Select Distinct user_id From elite_years)

Note: Primary Keys are denoted in the ER-Diagram with a yellow key icon.

3. Are there any columns with null values in the Users table? Indicate "yes," or
"no."

 Answer: No

 SQL code used to arrive at answer:

 Select * From user
 Where name Is Null Or
 review_count Is Null Or
 yelping_since Is Null Or
 useful Is Null Or
 funny Is Null Or
 cool Is Null Or
 fans Is Null Or
 average_stars Is Null Or
 compliment_hot Is Null Or
 compliment_more Is Null Or
 compliment_profile Is Null Or
 compliment_cute Is Null Or
 compliment_list Is Null Or
 compliment_note Is Null Or
 compliment_plain Is Null Or
 compliment_cool Is Null Or
 compliment_funny Is Null Or
 compliment_writer Is Null Or
 compliment_photos Is Null

 FYI: I used the query:

 Select * From user
 Where 1=0

first, because this just gives all of the columns. I then copy and pasted
(transposed) the columns into Excel and did some string trickery to get all those
"Is Null Or"s attached, and then copy and pasted from Excel back into the SQL
screen.

4. For each table and column listed below, display the smallest (minimum),
largest (maximum), and average (mean) value for the following fields:

 i. Table: Review, Column: Stars

 min: 1 max: 5 avg: 3.7082

 ii. Table: Business, Column: Stars

 min: 1.0 max: 5.0 avg: 3.6549

 iii. Table: Tip, Column: Likes

 min: 0 max: 2 avg: 0.0144

 iv. Table: Checkin, Column: Count

 min: 1 max: 53 avg: 1.9414

 v. Table: User, Column: Review_count

 min: 0 max: 2000 avg: 24.2995

5. List the cities with the most reviews in descending order:

 SQL code used to arrive at answer:

 Select city, Sum(review_count) As total_review_count From business

 Group By city
 Order By total_review_count Desc

 Copy and Paste the Result Below:

+-----------------+--------------------+
| city | total_review_count |
+-----------------+--------------------+
Las Vegas	82854
Phoenix	34503
Toronto	24113
Scottsdale	20614
Charlotte	12523
Henderson	10871
Tempe	10504
Pittsburgh	9798
Montréal	9448
Chandler	8112
Mesa	6875
Gilbert	6380
Cleveland	5593
Madison	5265
Glendale	4406
Mississauga	3814
Edinburgh	2792
Peoria	2624
North Las Vegas	2438
Markham	2352
Champaign	2029
Stuttgart	1849
Surprise	1520
Lakewood	1465
Goodyear	1155
+-----------------+--------------------+
(Output limit exceeded, 25 of 362 total rows shown)

6. Find the distribution of star ratings to the business in the following cities:

i. Avon

SQL code used to arrive at answer:

Select stars As star_rating, Count(stars) As star_rating_count From business
Where city = "Avon"
Group By star_rating
Order By star_rating_count Desc

Copy and Paste the Resulting Table Below (2 columns – star rating and count):
+-------------+-------------------+
| star_rating | star_rating_count |
+-------------+-------------------+
3.5	3
2.5	2
4.0	2
1.5	1
4.5	1
5.0	1
+-------------+-------------------+

ii. Beachwood

SQL code used to arrive at answer:

Select stars As star_rating, Count(stars) As star_rating_count From business
Where city = "Beachwood"
Group By star_rating
Order By star_rating_count Desc

Copy and Paste the Resulting Table Below (2 columns – star rating and count):
+-------------+-------------------+
| star_rating | star_rating_count |
+-------------+-------------------+
5.0	5
3.0	2
3.5	2
4.5	2
2.0	1
2.5	1
4.0	1
+-------------+-------------------+

7. Find the top 3 users based on their total number of reviews:

 SQL code used to arrive at answer:
--Have to include id because some users have the same name
Select Distinct name As users_name, id As user_id, review_count From user
Order By review_count Desc Limit 3

 Copy and Paste the Result Below:
+------------+------------------------+--------------+
| users_name | user_id | review_count |
+------------+------------------------+--------------+
Gerald	-G7Zkl1wIWBBmD0KRy_sCw	2000
Sara	-3s52C4zL_DHRK0ULG6qtg	1629
Yuri	-8lbUNlXVSoXqaRRiHiSNg	1339
+------------+------------------------+--------------+

8. Does posting more reviews correlate with more fans?

 Please explain your findings and interpretation of the results:

 Yes, but not a super strong correlation. I ran the query I used for question 7. but
without the Limit 3 and added in fans into the Select clause. I additionally ran this
query three more times with slight edits, one that was ascending to contrast from the
descending order, and then did the same but with the ordering by fans instead of
review_count for both ascending and descending. When descending by review_count the
fans field was all either double or triple digits, well above the fans average of 1.4896,
and when descending by fans the review_count field was all in the triple or quadruple
digits, well above the 24.2995 average. Similar correlated results were found when
ordering either field in the ascending order, as review_count was mostly in the single
digits with a few double digits when ordered by fans, and fans was all 0s when ordered
by review_count.

9. Are there more reviews with the word "love" or with the word "hate" in them?

 Answer: Love, as the 'text' field contained 1780 instances with the word "love",
whereas there were only 232 instances with the word "hate".

 SQL code used to arrive at answer:
 --For love query
 Select Count(text) As num_of_reviews_with_word From review
 Where text Like "%love%"

 --For hate query
 Select Count(text) As num_of_reviews_with_word From review
 Where text Like "%hate%"

10. Find the top 10 users with the most fans:

 SQL code used to arrive at answer:
/*This is the same query from question 7., just with review_count swapped out for
fans and a Limit of 10 instead of 3 For love query*/
 Select Distinct name As users_name, id As user_id, fans From user
 Order By fans Desc Limit 10

 Copy and Paste the Result Below:
+------------+------------------------+------+
| users_name | user_id | fans |
+------------+------------------------+------+
Amy	-9I98YbNQnLdAmcYfb324Q	503
Mimi	-8EnCioUmDygAbsYZmTeRQ	497
Harald	--2vR0DIsmQ6WfcSzKWigw	311
Gerald	-G7Zkl1wIWBBmD0KRy_sCw	253
Christine	-0IiMAZI2SsQ7VmyzJjokQ	173
Lisa	-g3XIcCb2b-BD0QBCcq2Sw	159
Cat	-9bbDysuiWeo2VShFJJtcw	133
William	-FZBTkAZEXoP7CYvRV2ZwQ	126
Fran	-9da1xk7zgnnfO1uTVYGkA	124
Lissa	-lh59ko3dxChBSZ9U7LfUw	120
+------------+------------------------+------+

Part 2: Inferences and Analysis

1. Pick one city and category of your choice and group the businesses in that
city or category by their overall star rating. Compare the businesses with 2-3
stars to the businesses with 4-5 stars and answer the following questions.
Include your code.

City choice: Las Vegas
Category choice: Restaurants

i. Do the two groups you chose to analyze have a different distribution of hours?

The distribution of hours is fairly consistent between the groups, with the 2-3 stars
group being open from 11AM-12AM (midnight), and the 4-5 stars group being open
11AM-10PM and 10AM-11PM, with one business being an outlier having the hours 8AM-
2PM on Sunday.

ii. Do the two groups you chose to analyze have a different number of reviews?

The distribution of reviews is more varied between the two groups than the distribution
of hours. The one business in the 2-3 stars group has 123 reviews, whereas the
average of the three businesses in the 4-5 stars group is 313, with one business having
168 reviews, the second having 768, and the third only having 3. A Google search was
run and verified that the third business, Hibachi-San, is permanently closed, and the
last review was in 2013, perhaps this is why there were only 3 reviews and no results
for the hours table.

iii. Are you able to infer anything from the location data provided between these
two groups? Explain.

No discernable correlation related to location. One might think that proximity to the Las
Vegas strip might correlate with more reviews, this was found to not be the case,
perhaps with a bigger data set a correlation may be found.

SQL code used for analysis:

SQL code used to answer question i.

--To search for city:
Select Distinct city From business

--To search for category:
Select Distinct category From category

--To get list of businesses in city and category along with their stars
Select city, category, name , stars
From business b Join category c On b.id = c.business_id
Where city = "Las Vegas" And category = "Restaurants"

Output:
+-----------+-------------+---------------------+-------+
| city | category | name | stars |
+-----------+-------------+---------------------+-------+
Las Vegas	Restaurants	Jacques Cafe	4.0
Las Vegas	Restaurants	Wingstop	3.0
Las Vegas	Restaurants	Big Wong Restaurant	4.0
Las Vegas	Restaurants	Hibachi-San	4.5
+-----------+-------------+---------------------+-------+

--To get hours for businesses between 2-3 stars
Select city, category, name, stars, hours
From business b Join category c On b.id = c.business_id
Join hours h On b.id = h.business_id
Where city = "Las Vegas" And category = "Restaurants"
And stars Between 2 And 3

Output:
+-----------+-------------+----------+-------+----------------------+
| city | category | name | stars | hours |
+-----------+-------------+----------+-------+----------------------+
Las Vegas	Restaurants	Wingstop	3.0	Monday	11:00-0:00
Las Vegas	Restaurants	Wingstop	3.0	Tuesday	11:00-0:00
Las Vegas	Restaurants	Wingstop	3.0	Friday	11:00-0:00
Las Vegas	Restaurants	Wingstop	3.0	Wednesday	11:00-0:00
Las Vegas	Restaurants	Wingstop	3.0	Thursday	11:00-0:00
Las Vegas	Restaurants	Wingstop	3.0	Sunday	11:00-0:00
Las Vegas	Restaurants	Wingstop	3.0	Saturday	11:00-0:00
+-----------+-------------+----------+-------+----------------------+

--To get hours for businesses between 4-5 stars
Select city, category, name, stars, hours
From business b Join category c On b.id = c.business_id
Join hours h On b.id = h.business_id
Where city = "Las Vegas" And category = "Restaurants"
And stars Between 4 And 5

Output:
+-----------+-------------+---------------------+-------+-----------------------+
| city | category | name | stars | hours |
+-----------+-------------+---------------------+-------+-----------------------+
Las Vegas	Restaurants	Jacques Cafe	4.0	Monday	11:00-20:00
Las Vegas	Restaurants	Jacques Cafe	4.0	Tuesday	11:00-20:00
Las Vegas	Restaurants	Jacques Cafe	4.0	Friday	11:00-20:00
Las Vegas	Restaurants	Jacques Cafe	4.0	Wednesday	11:00-20:00
Las Vegas	Restaurants	Jacques Cafe	4.0	Thursday	11:00-20:00
Las Vegas	Restaurants	Jacques Cafe	4.0	Sunday	8:00-14:00
Las Vegas	Restaurants	Jacques Cafe	4.0	Saturday	11:00-20:00
Las Vegas	Restaurants	Big Wong Restaurant	4.0	Monday	10:00-23:00
Las Vegas	Restaurants	Big Wong Restaurant	4.0	Tuesday	10:00-23:00
Las Vegas	Restaurants	Big Wong Restaurant	4.0	Friday	10:00-23:00
Las Vegas	Restaurants	Big Wong Restaurant	4.0	Wednesday	10:00-23:00
Las Vegas	Restaurants	Big Wong Restaurant	4.0	Thursday	10:00-23:00
Las Vegas	Restaurants	Big Wong Restaurant	4.0	Sunday	10:00-23:00
Las Vegas	Restaurants	Big Wong Restaurant	4.0	Saturday	10:00-23:00
+-----------+-------------+---------------------+-------+-----------------------+

*Note: Hibachi-San is absent from the table above, using the id associated with
Hibachi-San from the business table an additional query was ran for the business_id in
the hours table and no results were found, verifying there was no record for Hibachi-
San in the hours table.

SQL code used to answer question ii.

--To get review_count for businesses between 2-3 stars
Select city, category, name, stars, review_count
From business b Join category c On b.id = c.business_id
Where city = "Las Vegas" And category = "Restaurants"
And stars Between 2 And 3

Output:
+-----------+-------------+----------+-------+--------------+
| city | category | name | stars | review_count |
+-----------+-------------+----------+-------+--------------+
| Las Vegas | Restaurants | Wingstop | 3.0 | 123 |
+-----------+-------------+----------+-------+--------------+

--To get review_count for businesses between 4-5 stars
Select city, category, name, stars, review_count
From business b Join category c On b.id = c.business_id
Where city = "Las Vegas" And category = "Restaurants"
And stars Between 4 And 5

+-----------+-------------+---------------------+-------+--------------+
| city | category | name | stars | review_count |
+-----------+-------------+---------------------+-------+--------------+
Las Vegas	Restaurants	Jacques Cafe	4.0	168
Las Vegas	Restaurants	Big Wong Restaurant	4.0	768
Las Vegas	Restaurants	Hibachi-San	4.5	3
+-----------+-------------+---------------------+-------+--------------+

SQL code used to answer question iii.

--To get location data for businesses between 2-3 stars
Select b.name, neighborhood, address, postal_code, latitude, longitude
From business b Join category c On b.id = c.business_id
Where city = "Las Vegas" And category = "Restaurants"
And b.stars Between 2 And 3

Output:
+----------+----------------------+-------------+----------+-----------+
| name | address | postal_code | latitude | longitude |
+----------+----------------------+-------------+----------+-----------+
| Wingstop | 5045 W Tropicana Ave | 89103 | 36.1003 | -115.21 |
+----------+----------------------+-------------+----------+-----------+

--To get location data for businesses between 4-5 stars
Select b.name, address, postal_code, latitude, longitude
From business b Join category c On b.id = c.business_id
Where city = "Las Vegas" And category = "Restaurants"
And b.stars Between 4 And 5

+------------+-----------------------+-------------+----------+----------+
| name | address | postal_code | latitude |longitude |
+------------+-----------------------+-------------+----------+----------+
Jacques Cafe	1910 Village Center Cir	89134	36.1933	115.304
Big Wong	5040 Spring Mountain Rd	89146	36.1267	-115.21
Hibachi-San	3480 S Maryland Pkwy	89169	36.1259	-115.135
+------------+-----------------------+-------------+----------+----------+

2. Group business based on the ones that are open and the ones that are closed.
What differences can you find between the ones that are still open and the ones
that are closed? List at least two differences and the SQL code you used to
arrive at your answer.

i. Difference 1: Review count

I reasoned that the more reviews a business had the more likely it was open because
most businesses that close do so early after their opening, and review_count is a
metric that would grow and accumulate over time. Sure enough, closed businesses
tended to have a smaller review_count while businesses that were open tended to have
a higher review_count. I ran queries with a condition of greater than a 100, 500, and
1000 review_count, and the higher the review_count the greater the percent open,
with 90.1%, 96.1%, and 100% respectively, which were all above the baseline percent
of stores open when no additional conditions were added to a query which was 84.8%,
clearly demonstrating a difference between businesses that were open and businesses
that were closed when the review_count was taken into account.

ii. Difference 2: Stars

I also reasoned those businesses with a higher rating, i.e., more stars, would be more
likely to stay open, because a higher rating typically meant better customer satisfaction
which also tends to mean better customer retention which is one of the main factors for
a business to stay open. Initially I ran queries with just one additional condition for
stars, dividing the stars up between three different groups of three (1.0, 1.5, 2.0),
(2.5, 3.0, 3.5), and (4.0, 4.5, 5.0), below this paragraph is the output of a Select
Distinct stars query From the business table. The initial results were a bit
perplexing, as while the 4.0-5.0 group did have the highest percent of open businesses,
the 1.0-2.0 group had the second highest. I realized that there was no measure of how
long the business had been open, or more importantly, when the business began.
Because surely the longer the further back in time a business had been open the more
a lower rating correlated with its likelihood to close. To account for this, I also added in
the greater than review_count condition from the first difference but kept it at greater
than 100 regardless of stars to have it be constant. Once both conditions were added to
the query a clear correlation was present with the 10-2.0 group having 85.7% of
businesses open, the 2.5-3.5 group having 87.4% of businesses open, and the 4.0-5.0
group having 92.1% of businesses open. It should also be noted that the first two
groups were below, and the last group was above, the 90.1% baseline for percent of
businesses open with a review_count of over 100, clearly demonstrating a difference
between businesses that were open and closed when the number of stars was taken
into account.

+-------+
| stars |
+-------+
| 5.0 |
| 4.5 |
| 4.0 |
| 3.5 |
| 3.0 |
| 2.5 |
| 2.0 |
| 1.5 |
| 1.0 |
+-------+

SQL code used for analysis:
SQL code used to get a baseline of how many businesses were open or closed
--To get count and percent of businesses that are open or closed
Select Count(Distinct b.id) As total_biz,
 --Get count of businesses that are closed
 (Select Count(Distinct b.id)
 From business b
 Where is_open = 0) As biz_closed,
 /*Divide count of businesses that are closed by total businesses
 multiply by 100 and concatenate '%'*/
 (Round(Cast((Select Count(Distinct b.id)
 From business b
 Where is_open = 0) As Real)/
 Cast(Count(Distinct b.id) As Real)*100, 2))||'%'
 As percent_closed,
 --Get count of businesses that are open
 (Select Count(Distinct b.id)
 From business b
 Where is_open = 1) As biz_open,
 /*Divide count of businesses that are open by total businesses
 multiply by 100 and concatenate '%'*/
 (Round(Cast((Select Count(Distinct b.id)
 From business b
 Where is_open = 1) As Real)/
 Cast(Count(Distinct b.id) As Real)*100, 2))||'%'
 As percent_open
From business b
Output:
+-----------+------------+----------------+----------+--------------+
| total_biz | biz_closed | percent_closed | biz_open | percent_open |
+-----------+------------+----------------+----------+--------------+
| 10000 | 1520 | 15.2% | 8480 | 84.8% |
+-----------+------------+----------------+----------+--------------+

SQL code used to for businesses with a review_count over 100

/*To get count and percent of businesses that are open or closed with a
review_count over 100*/
Select Count(Distinct b.id) As total_biz,
 (Select Count(Distinct b.id)
 From business b
 Where is_open = 0 And review_count > 100) As biz_closed,
 (Round(Cast((Select Count(Distinct b.id)
 From business b
 Where is_open = 0 And review_count > 100) As Real)/
 Cast(Count(Distinct b.id) As Real)*100, 2))||'%'
 As percent_closed,
 (Select Count(Distinct b.id)
 From business b
 Where is_open = 1 And review_count > 100) As biz_open,
 (Round(Cast((Select Count(Distinct b.id)
 From business b
 Where is_open = 1 And review_count > 100) As Real)/
 Cast(Count(Distinct b.id) As Real)*100, 2))||'%'
 As percent_open
From business b
Where review_count > 100

Output:
+-----------+------------+----------------+----------+--------------+
| total_biz | biz_closed | percent_closed | biz_open | percent_open |
+-----------+------------+----------------+----------+--------------+
| 615 | 61 | 9.92% | 554 | 90.08% |
+-----------+------------+----------------+----------+--------------+

SQL code used to for businesses with a review_count over 500

/*To get count and percent of businesses that are open or closed with a
review_count over 500*/
Select Count(Distinct b.id) As total_biz,
 (Select Count(Distinct b.id)
 From business b
 Where is_open = 0 And review_count > 500) As biz_closed,
 (Round(Cast((Select Count(Distinct b.id)
 From business b
 Where is_open = 0 And review_count > 500) As Real)/
 Cast(Count(Distinct b.id) As Real)*100, 2))||'%'
 As percent_closed,
 (Select Count(Distinct b.id)
 From business b
 Where is_open = 1 And review_count > 500) As biz_open,
 (Round(Cast((Select Count(Distinct b.id)
 From business b
 Where is_open = 1 And review_count > 500) As Real)/
 Cast(Count(Distinct b.id) As Real)*100, 2))||'%'
 As percent_open
From business b
Where review_count > 500

Output:
+-----------+------------+----------------+----------+--------------+
| total_biz | biz_closed | percent_closed | biz_open | percent_open |
+-----------+------------+----------------+----------+--------------+
| 51 | 2 | 3.92% | 49 | 96.08% |
+-----------+------------+----------------+----------+--------------+

SQL code used to for businesses with a review_count over 1000

/*To get count and percent of businesses that are open or closed with a
review_count over 1000*/
Select Count(Distinct b.id) As total_biz,
 (Select Count(Distinct b.id)
 From business b
 Where is_open = 0 And review_count > 1000) As biz_closed,
 (Round(Cast((Select Count(Distinct b.id)
 From business b
 Where is_open = 0 And review_count > 1000) As Real)/
 Cast(Count(Distinct b.id) As Real)*100, 2))||'%'
 As percent_closed,
 (Select Count(Distinct b.id)
 From business b
 Where is_open = 1 And review_count > 1000) As biz_open,
 (Round(Cast((Select Count(Distinct b.id)
 From business b
 Where is_open = 1 And review_count > 1000) As Real)/
 Cast(Count(Distinct b.id) As Real)*100, 2))||'%'
 As percent_open
From business b
Where review_count > 1000

Output:
+-----------+------------+----------------+----------+--------------+
| total_biz | biz_closed | percent_closed | biz_open | percent_open |
+-----------+------------+----------------+----------+--------------+
| 8 | 0 | 0.0% | 8 | 100.0% |
+-----------+------------+----------------+----------+--------------+

SQL code used to for businesses with 2 or less stars

/*To get count and percent of businesses that are open or closed when less than
or equal to 2 stars and review_count > 100*/
Select Count(Distinct b.id) As total_biz,
 (Select Count(Distinct b.id)
 From business b
 Where is_open = 0 And stars <= 2 And review_count > 100)

 As biz_closed,
 (Round(Cast((Select Count(Distinct b.id)
 From business b
 Where is_open = 0 And stars <= 2 And review_count > 100) As Real)/
 Cast(Count(Distinct b.id) As Real)*100, 2))||'%'
 As percent_closed,
 (Select Count(Distinct b.id)
 From business b
 Where is_open = 1 And stars <= 2 And review_count > 100) As biz_open,
 (Round(Cast((Select Count(Distinct b.id)
 From business b
 Where is_open = 1 And stars <= 2 And review_count > 100) As Real)/
 Cast(Count(Distinct b.id) As Real)*100, 2))||'%'
 As percent_open
From business b
Where stars <= 2 And review_count > 100

Output with review_count condition added:
+-----------+------------+----------------+----------+--------------+
| total_biz | biz_closed | percent_closed | biz_open | percent_open |
+-----------+------------+----------------+----------+--------------+
| 7 | 1 | 14.29% | 6 | 85.71% |
+-----------+------------+----------------+----------+--------------+

Output without review_count condition added:
+-----------+------------+----------------+----------+--------------+
| total_biz | biz_closed | percent_closed | biz_open | percent_open |
+-----------+------------+----------------+----------+--------------+
| 928 | 132 | 14.22% | 796 | 85.78% |
+-----------+------------+----------------+----------+--------------+

SQL code used to for businesses with between 2.5 and 3.5 stars

/*To get count and percent of businesses that are open or closed when between 2.5
 and 3.5 stars and review_count > 100*/
Select Count(Distinct b.id) As total_biz,
 (Select Count(Distinct b.id)
 From business b
 Where is_open = 0 And (stars Between 2.5 And 3.5)

 And review_count > 100) As biz_closed,
 (Round(Cast((Select Count(Distinct b.id)
 From business b
 Where is_open = 0 And (stars Between 2.5 And 3.5)
 And review_count > 100) As Real)/
 Cast(Count(Distinct b.id) As Real)*100, 2))||'%'
 As percent_closed,
 (Select Count(Distinct b.id)
 From business b
 Where is_open = 1 And (stars Between 2.5 And 3.5)
 And review_count > 100) As biz_open,
 (Round(Cast((Select Count(Distinct b.id)
 From business b
 Where is_open = 1 And (stars Between 2.5 And 3.5)
 And review_count > 100) As Real)/
 Cast(Count(Distinct b.id) As Real)*100, 2))||'%'
 As percent_open
From business b
Where (stars Between 2.5 And 3.5) And review_count > 100

Output with review_count condition added:
+-----------+------------+----------------+----------+--------------+
| total_biz | biz_closed | percent_closed | biz_open | percent_open |
+-----------+------------+----------------+----------+--------------+
| 254 | 32 | 12.6% | 222 | 87.4% |
+-----------+------------+----------------+----------+--------------+

Output without review_count condition added:
+-----------+------------+----------------+----------+--------------+

| total_biz | biz_closed | percent_closed | biz_open | percent_open |
+-----------+------------+----------------+----------+--------------+
| 4064 | 735 | 18.09% | 3329 | 81.91% |
+-----------+------------+----------------+----------+--------------+

SQL code used to for businesses with 4 or more stars

/*To get count and percent of businesses that are open or closed when greater
than or equal to stars and review_count > 100*/
Select Count(Distinct b.id) As total_biz,
 (Select Count(Distinct b.id)
 From business b
 Where is_open = 0 And stars >= 4 And review_count > 100)
 As biz_closed,
 (Round(Cast((Select Count(Distinct b.id)
 From business b
 Where is_open = 0 And stars >= 4 And review_count > 100) As Real)/
 Cast(Count(Distinct b.id) As Real)*100, 2))||'%'
 As percent_closed,
 (Select Count(Distinct b.id)
 From business b
 Where is_open = 1 And stars >= 4 And review_count > 100) As biz_open,

 (Round(Cast((Select Count(Distinct b.id)
 From business b
 Where is_open = 1 And stars >= 4 And review_count > 100) As Real)/
 Cast(Count(Distinct b.id) As Real)*100, 2))||'%'
 As percent_open
From business b
Where stars >= 4 And review_count > 100

Output with review_count condition added:
+-----------+------------+----------------+----------+--------------+
| total_biz | biz_closed | percent_closed | biz_open | percent_open |
+-----------+------------+----------------+----------+--------------+
| 354 | 28 | 7.91% | 326 | 92.09% |
+-----------+------------+----------------+----------+--------------+

Output without review_count condition added:
+-----------+------------+----------------+----------+--------------+
| total_biz | biz_closed | percent_closed | biz_open | percent_open |
+-----------+------------+----------------+----------+--------------+
| 5008 | 653 | 13.04% | 4355 | 86.96% |
+-----------+------------+----------------+----------+--------------+

3. For this last part of your analysis, you are going to choose the type
of analysis you want to conduct on the Yelp dataset and are going to
prepare the data for analysis.

Ideas for analysis include: Parsing out keywords and business attributes
for sentiment analysis, clustering businesses to find commonalities or
anomalies between them, predicting the overall star rating for a business,
predicting the number of fans a user will have, and so on. These are just
a few examples to get you started, so feel free to be creative and come up
with your own problem you want to solve. Provide answers, in-line, to all
of the following:

i. Indicate the type of analysis you chose to do:

We have all heard how being angry can drive up engagement with various websites
based and that is why several social media sites configure their algorithms to provoke
anger. I wanted to see if there was any correlation between a negative or low stars
rating the review_count of a user.

ii. Write 1-2 brief paragraphs on the type of data you will need for your
analysis and why you chose that data:

Fortunately, the user table has both review_count for a user as well as an
average_stars field, so no additional work will have to be done to find the average
number of stars for a user.

iii. Output of your finished dataset:

Please see output on the five subsequent pages, as well as my final thoughts and
analysis on the results.

Query 1:

Output when sorting by review_count in descending order:

+------------------------+--------------+---------------+
| id | review_count | average_stars |
+------------------------+--------------+---------------+
-G7Zkl1wIWBBmD0KRy_sCw	2000	3.6
-3s52C4zL_DHRK0ULG6qtg	1629	3.42
-8lbUNlXVSoXqaRRiHiSNg	1339	4.11
-K2Tcgh2EKX6e6HqqIrBIQ	1246	3.14
-FZBTkAZEXoP7CYvRV2ZwQ	1215	4.41
--2vR0DIsmQ6WfcSzKWigw	1153	4.4
-gokwePdbXjfS0iF7NsUGA	1116	3.31
-DFCC64NXgqrxlO8aLU5rg	1039	3.71
-8EnCioUmDygAbsYZmTeRQ	968	4.05
-0IiMAZI2SsQ7VmyzJjokQ	930	3.69
-fUARDNuXAfrOn4WLSZLgA	904	3.6
-hKniZN2OdshWLHYuj21jQ	864	4.0
-9da1xk7zgnnfO1uTVYGkA	862	4.1
-B-QEUESGWHPE_889WJaeg	861	3.36
-kLVfaJytOJY2-QdQoCcNQ	842	4.1
-kO6984fXByyZm3_6z2JYg	836	3.47
-lh59ko3dxChBSZ9U7LfUw	834	3.68
-g3XIcCb2b-BD0QBCcq2Sw	813	4.09
-l9giG8TSDBG1jnUBUXp5w	775	3.83
-dw8f7FLaUmWR7bfJ_Yf0w	754	3.62
-AaBjWJYiQxXkCMDlXfPGw	702	3.66
-jt1ACMiZljnBFvS6RRvnA	696	3.27
-IgKkE8JvYNWeGu8ze4P8Q	694	3.89
-hxUwfo3cMnLTv-CAaP69A	676	3.31
-H6cTbVxeIRYR-atxdielQ	675	4.06
+------------------------+--------------+---------------+

Query 2:

Output when sorting by review_count in ascending order:

+------------------------+--------------+---------------+
| id | review_count | average_stars |
+------------------------+--------------+---------------+
--0sXNBv6IizZXuV-nl0Aw	1	5.0
--5BsHjOVLIGoTwjol-V2w	1	1.0
--6u02ZqjZRnwtX3t9bZtQ	1	1.0
--6_wnx2sD1rqOQAQH96wg	1	4.0
--7gZYIAVGCaPT4k0qbbrw	1	5.0
--9yZb1OLNN18HyDXgZrJA	1	4.0
--B1_68kNRRoT9k61Qlu3g	1	5.0
--C5cBJscv6TNMpF_OSJnA	1	5.0
--cAxfHMTBqYGmvkDNXK-g	1	5.0
--d2gPjSkSEQuhncWxs-kw	1	5.0
--DKDJlRHfsvufdGSk_Sdw	1	1.0
--ERQVpqAAoi262TTbLVzQ	1	5.0
--erV6Uzfa42Wk2nf4OIfg	1	5.0
--G7oWdtqbbbmNfe6efMdA	1	5.0
--haaCngcz4NnX_IVSFswA	1	5.0
--HTK7EdtoCKTsNbA17CNA	1	2.0
--I8oeC2I3GXWeI6seyx8g	1	5.0
--JgEXWTirBKGOLHOBr0Wg	1	1.0
--K1aJ5K8ZLIfDd_NjySbA	1	5.0
--K2iq2BCfOwu9CmDm3zCQ	1	5.0
--KKFIKZpMeRy8fLNp0brA	1	5.0
--kMhfqxhJ7sEDiRCSKO0A	1	1.0
--lLPe25C11iuKI1hwgxaQ	1	5.0
--LNODeTnFsPFlS_875W2Q	1	5.0
--LnqQQ2mVdrpPt2UC8d6A	1	2.0
+------------------------+--------------+---------------+

Query 3:

Output when sorting by average_stars in descending order:

+------------------------+--------------+---------------+
| id | review_count | average_stars |
+------------------------+--------------+---------------+
---94vtJ_5o_nikEs6hUjg	2	5.0
--0sXNBv6IizZXuV-nl0Aw	1	5.0
--1mPJZdSY9KluaBYAGboQ	5	5.0
--26jc8nCJBy4-7r3ZtmiQ	2	5.0
--44NNdtngXMzsxyN7ju6Q	2	5.0
--4ww39MLTS1SBRmCrSmww	3	5.0
--6D_IuxyKTN53pHi904ag	2	5.0
--7D3lFxyMYvs2JYiRrg6Q	2	5.0
--7gZYIAVGCaPT4k0qbbrw	1	5.0
--8KXrwtbo2Szv6zakkzTQ	2	5.0
--AujbGl6SYRaY8SFVNHXA	3	5.0
--B1_68kNRRoT9k61Qlu3g	1	5.0
--C5cBJscv6TNMpF_OSJnA	1	5.0
--cAxfHMTBqYGmvkDNXK-g	1	5.0
--d2gPjSkSEQuhncWxs-kw	1	5.0
--dhSVoOFDBiMCCwDmFccQ	2	5.0
--ERQVpqAAoi262TTbLVzQ	1	5.0
--erV6Uzfa42Wk2nf4OIfg	1	5.0
--fF-8O8ruMCIuP45IwVMQ	3	5.0
--G7oWdtqbbbmNfe6efMdA	1	5.0
--gc9Xg3MPKCy3BPt1g_1A	5	5.0
--gFHlgNyKGY4QJT9pRKJA	2	5.0
--GwB-sktmoAOPBsbAaiow	2	5.0
--haaCngcz4NnX_IVSFswA	1	5.0
--I8oeC2I3GXWeI6seyx8g	1	5.0
+------------------------+--------------+---------------+

Query 4:

Output when sorting by average_stars in ascending order:

+------------------------+--------------+---------------+
| id | review_count | average_stars |
+------------------------+--------------+---------------+
--56y1InAvNoQOD6YYrhVQ	3	1.0
--5BsHjOVLIGoTwjol-V2w	1	1.0
--6u02ZqjZRnwtX3t9bZtQ	1	1.0
--bUghK7FPTx7j6f_44U4g	2	1.0
--DKDJlRHfsvufdGSk_Sdw	1	1.0
--JgEXWTirBKGOLHOBr0Wg	1	1.0
--JS-RvSykutl1DavCbkIg	2	1.0
--kMhfqxhJ7sEDiRCSKO0A	1	1.0
--oa_6IvREwaGutOtE6ZpA	1	1.0
--TvGNywm2I1iwNWZmerBA	1	1.0
--UjDunOU3ZuRzYppmyHgQ	1	1.0
--VMH5hO94TMURIMoy9iQQ	1	1.0
--wiweOmNCw6vg2kbzbwEA	2	1.0
--XroDUidjD1PcmgahDk2w	1	1.0
--YFO6IZDd_-14p5F51ReA	1	1.0
-0-XBCqCPLSGZyn56iH5dw	1	1.0
-05nijFl0po5PwETdKRYwg	1	1.0
-06AUDaZG_VaSVugGvPd0A	1	1.0
-08n6ETKZLHjbm9YSv-NlQ	1	1.0
-0By6XtiEMkjT7UVV5w8rg	1	1.0
-0ckjZ88S5PLSMNYBKitrg	1	1.0
-0cpXx6FYhxB49_9ekj-cg	1	1.0
-0DgO-WJ7yBjAihY_PoUpw	1	1.0
-0fu5TVgRGvysK8WySufOA	1	1.0
-0gS15b5T-Xnw0uaUy6Ymg	1	1.0
+------------------------+--------------+---------------+

Query 5:

Output when review_count = 1 and average_stars = 1:

+----------------------+
| Count(average_stars) |
+----------------------+
| 473 |
+----------------------+

Query 6:

Output when review_count = 1 and average_stars = 5:

+----------------------+
| Count(average_stars) |
+----------------------+
| 937 |
+----------------------+

Query 7:

Output for average average_stars:

+--------------------+
| Avg(average_stars) |
+--------------------+
| 3.699439 |
+--------------------+

As we can see from the six queries above, the results were actually contrary to my
initial assumptions. The lowest review_count amounts were typically associated with
either the highest rating of 5.0 or the lowest of 1.0, I attribute this to one time users
who usually would not take the time to go on Yelp and leave a review, but had an
experience that was either so good, or so bad, it prompted them to go online and leave
a maximally positive (5.0) or maximally negative review (1.0). To find the actual
breakdown of average_stars for just a review_count of 1, I ran the additional queries 5
& 6. The results of these additional queries were refreshing however, in that the 5.0s
outweighed the 1.0s by almost double. As for the average_stars for the users with the
highest review_counts, typically they were between 3.0 and 4.5, which is not low or
negative by any means, and I attribute this average_stars rating to actually a more
honest rating by a user, it would be unreasonable that all ratings would be high, so it
makes sense that the rating would be dragged down a little. Also, I attribute the result
of the average_stars of users with the highest review_counts being above the average
of average_stars for all users to the fact that the users with the highest review_counts
probably were more informed customers and thus did their homework before going out
into the marketplace and specifically sought out businesses of high value.

iv. Provide the SQL code you used to create your final dataset:

Query 1:
Select id, review_count, average_stars
From user
Where review_count > 0
Order By review_count Desc

Query 2:
Select id, review_count, average_stars
From user
Where review_count > 0
Order By review_count

Query 3:
Select id, review_count, average_stars
From user
Where review_count > 0
Order By average_stars Desc

Query 4:
Select id, review_count, average_stars
From user
Where review_count > 0
Order By average_stars

Query 5:
Select Count(average_stars)
From user
Where review_count = 1
And average_stars = 1

Query 6:
Select Count(average_stars)
From user
Where review_count = 1
And average_stars = 5

Query 7:
Select Avg(average_stars)
From user

